全站搜索
首页_赢咖4星辉-官方注册地址
首页_赢咖4星辉-官方注册地址
赢咖4云南天文台利用机器学习预测日冕全日面软X射线辐射分布
作者:管理员    发布于:2021-07-24 20:30    文字:【】【】【

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。更多简介 +

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。赢咖4上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  近期,中国科学院云南天文台太阳物理研究团组副研究员洪俊超及其合作者研究员季凯帆、刘辉等人开展太阳观测分析与人工智能学习的学科交叉研究,基于当前主流的日冕极紫外波段成像数据,首次利用机器学习方法预测日冕软X射线波段辐射。相关研究结果以

  Mapping Solar X-Ray Images from SDO/AIA EUV Images by Deep Learning

  日冕作为太阳大气的最外层,由十分稀薄的、赢咖4温度高达百万度甚至千万度的等离子体组成。日冕中的自由电子被附近离子的电场散射,通过自由-自由跃起损失动能并辐射光子(free-free emission),这一物理过程是日冕极紫外波段和软X射线波段辐射的主要来源,也因此可在极紫外波段和软X射线波段对日冕等离子体结构进行成像探测。

  近年来,全日面日冕的探测主要来源于极紫外波段的成像观测,由空间卫星SDO的太阳大气成像仪AIA每12秒在6个极紫外波段(171、193、211、335、131、94 埃)同时进行全日面成像。而另外一台卫星Hinode的软X射线望远镜XRT每天只在几个固定的时刻对日冕进行少量的全日面软X射线波段成像。该研究采用一种机器(深度)学习方法——人工智能卷积神经网络,统计分析配对的AIA与XRT数据,建立了由AIA 6波段观测至XRT软X射线观测的映射模型。研究表明,该模型能构造出与真实观测一致的软X射线数据,从而能够缓解当前关于日冕软X射线观测的缺失。通过该方法预测日冕软X射线观测,比传统方法利用极紫外日冕观测反演日冕微分辐射测量(DEM)再预测软X射线观测更便捷、更快、更精确。研究进一步发现,结合由该方法预测的软X-射线虚拟数据和实际观测的日冕极紫外数据,可对日冕DEM作更为精确的反演,尤其是针对具有较高温度等离子体(五百万度以上)的日冕特征。未来,由机器学习虚拟的多波段观测可能为某些具体的太阳物理分析(如日冕结构热分布)提供数据辅助。

  该研究获得了国家自然科学基金重点项目和面上项目、中科院太阳活动重点实验室,以及科技部重大项目的支持。

  近期,中国科学院云南天文台太阳物理研究团组副研究员洪俊超及其合作者研究员季凯帆、刘辉等人开展太阳观测分析与人工智能学习的学科交叉研究,基于当前主流的日冕极紫外波段成像数据,首次利用机器学习方法预测日冕软X射线波段辐射。相关研究结果以Mapping Solar X-Ray Images from SDO/AIA EUV Images by Deep Learning为题,发表在《天体物理学杂志》上。

  日冕作为太阳大气的最外层,由十分稀薄的、温度高达百万度甚至千万度的等离子体组成。日冕中的自由电子被附近离子的电场散射,通过自由-自由跃起损失动能并辐射光子(free-free emission),这一物理过程是日冕极紫外波段和软X射线波段辐射的主要来源,也因此可在极紫外波段和软X射线波段对日冕等离子体结构进行成像探测。

  近年来,全日面日冕的探测主要来源于极紫外波段的成像观测,由空间卫星SDO的太阳大气成像仪AIA每12秒在6个极紫外波段(171、193、211、335、131、94 埃)同时进行全日面成像。而另外一台卫星Hinode的软X射线望远镜XRT每天只在几个固定的时刻对日冕进行少量的全日面软X射线波段成像。

  该研究采用一种机器(深度)学习方法——人工智能卷积神经网络,统计分析配对的AIA与XRT数据,建立了由AIA 6波段观测至XRT软X射线观测的映射模型。研究表明,该模型能构造出与真实观测一致的软X射线数据,从而能够缓解当前关于日冕软X射线观测的缺失。通过该方法预测日冕软X射线观测,比传统方法利用极紫外日冕观测反演日冕微分辐射测量(DEM)再预测软X射线观测更便捷、更快、更精确。研究进一步发现,结合由该方法预测的软X-射线虚拟数据和实际观测的日冕极紫外数据,可对日冕DEM作更为精确的反演,尤其是针对具有较高温度等离子体(五百万度以上)的日冕特征。未来,由机器学习虚拟的多波段观测可能为某些具体的太阳物理分析(如日冕结构热分布)提供数据辅助。

  该研究获得了国家自然科学基金重点项目和面上项目、中科院太阳活动重点实验室,以及科技部重大项目的支持。

相关推荐
  • 赢咖4娱乐诺基亚与沃达丰开发出云端机器学习系统:可提前检测和修复网络异常
  • 赢咖4云南天文台利用机器学习预测日冕全日面软X射线辐射分布
  • 赢咖4注册如何系统学习机器学习?
  • 赢咖4娱乐Talk预告 上海交通大学研究系列助理教授张宁: 基于机器学习的音乐分析与生成
  • 赢咖4刚获ICML大奖的机器学习大牛Max Welling加入微软主攻分子模拟
  • 赢咖4注册一文浅谈量化交易与机器学习了解量化交易的现在与未来
  • 赢咖4用人工智能和机器学习为数据中心提供动力
  • 赢咖4翻译翻译什么叫机器学习?
  • 赢咖4注册图灵奖得主Judea Pearl谈机器学习:不能只靠数据
  • 赢咖4注册阿里云机器学习PAI构建AI集团军作战联手Intel在软硬件领域发力
  • 脚注信息
    版权所有 Copyright(C)2020 星辉娱乐
    网站地图|xml地图|友情链接: 百度一下