全站搜索
首页_赢咖4星辉-官方注册地址
首页_赢咖4星辉-官方注册地址
赢咖4注册人工智能机器学习年度2018年度进展综述
作者:管理员    发布于:2021-04-17 21:57    文字:【】【】【

  对我来说,在每年的这个时候来总结机器学习的进展已经成为一种惯常(例如我去年在Quora上的回答)。和往常一样,这个总结必然会因为我自己的兴趣和关注点而有所偏颇,但我努力让它尽可能的涉猎广泛。请注意,下面是我在Quora上的博客作答。

  如果我需要在几行内总结在2018年的机器学习的主要亮点,这些将是我可能会提及的:

  如果说2017年可能是恐惧散布和人工智能炒作的顶峰,那么2018年似乎是我们开始些许冷静下来的一年。诚然,一些人一直在继续宣扬他们对人工智能的恐惧,但他们可能忙于其他问题而没有把这一点作为他们的重要议程。与此同时,出版社和其他媒体似乎已经平静下来,认为虽然自动驾驶汽车和类似技术正在向我们走来,但它们不会立刻诞生。尽管如此,仍有一些人在为我们应该监管人工智能而不是专注于监管其结果的坏主意辩护。

  但是值得高兴的是,今年的重点似乎已经转移到可处理的更具体的问题上。例如,有很多关于公平的讨论,并且有许多关于这个主题的会议(参见FATML或ACM FAT),甚至还有一些谷歌的在线课程。

  沿着这些方面,今年被广泛讨论的其他问题还包括可阐释性、解释性和因果性。从后者开始,因果关系似乎重新回到聚光灯下,主要是因为Judea Pearl的《为什么之书》一书的出版。作者不仅决定写他的第一本“通俗易懂”的书,而且他还在Twitter上推广关于因果关系的讨论。事实上,就连流行媒体也将其描述为对现有人工智能方法的“挑战”(例如,请参阅《大西洋刊》的这篇文章)。实际上,即使是ACM Recsys大会上的最佳论文奖也颁给了一篇关于如何在嵌入式中包含因果关系的论文(参见“因果嵌入的建议”)。话虽如此,赢咖4许多其他作者仍然认为因果关系在某种程度上是一种理论上的干扰,我们应该再次关注更具体的问题,比如阐释性或解释性。说到解释性,这一领域的一个亮点可能是关于Anchor的论文及代码的发布,它们是著名的LIME模型的同一作者的后续。

  虽然仍然存在一些关于深度学习作为最通用人工智能模型范例的问题(考虑到那些疑问,算我一个),虽然我们继续浏览的第n个在Yann LeCun与Gary Marcus间的迭代,显而易见的是深度学习不仅是存在的,并且它仍然是远远没有达到它可达到的水平。更具体地说,在这一年里,深度学习方法在从语言到医疗保健等不同于视觉的领域取得了前所未有的成功。

  事实上,很可能是在自然语言处理领域,我们看到了今年最有趣的进展。如果我必须选择今年最令人印象深刻的AI应用程序,它们都是自然语言处理(而且都来自谷歌)。第一个是谷歌超级有用的智能架构,第二个是他们的双工对话系统。

  使用语言模型的想法加速了这些进展,这种想法在今年由Fast.ai的UMLFit普及(参见“理解 UMLFit”)。然后,我们看到了其他(和改进的)方法,如艾伦的ELMO、Open AI的变形金刚,或者最近谷歌的打败了许多SOTA的结果的BERT。这些模型被描述为“自然语言处理的 Imagenet 时刻”,因为它们提供了可使用的预训练通用模型,这些模型也可以针对特定任务进行微调。除了语言模型之外,还有许多其他有趣的改进,比如Facebook的多语言嵌入便是一个例子。有趣的是,我们还看到这些方法和其他方法是如何迅速地集成到更一般的自然语言处理框架中,比如AllenNLP或Zalando的FLAIR。

  (图)BERT是深度双向的,OpenAI GPT是单向的,而ELMo是浅双向的说到框架,今年

  0发布时,Pytorch似乎正在赶上TensorFlow。虽然在生产中使用Pytorch的情况仍然不是最理想的,但是Pytorch在这方面的进展似乎比Tensorflow在可用性、文档和教育方面的进展要快。有趣的是,很可能选择Pytorch作为框架在实现Fast.ai库上扮演了重要角色。话虽如此,谷歌意识到了这一切,并正在朝着正确的方向推进,如将Keras作为最高级而纳入框架,或者增加像Paige Bailey这样的以开发人员为中心的关键领导。最后,我们都能从这些伟大的资源中获益,所以请继续努力吧!

  有趣的是,框架空间中另一个在框架空间有着诸多有趣的发展的是强化学习。虽然我不认为强化学习的研究进展像前几年那样令人印象深刻(我只想到DeepMind最近的Impala的工作),但令人惊讶的是,在一年时间里,我们看到所有主要人工智能厂家都发布了强化学习框架。谷歌发布了Dopamine框架用于研究,而Deepmind(也在谷歌内部)发布了某种程度上与之竞争的TRFL框架。Facebook不能落后,它发布Horizon,而微软则发布了TextWorld,而它更擅长训练基于文本的代理。有希望的是,所有这些开源的好处将帮助我们在2019年看到许多强化学习的进步。

  为结束框架层面的讨论,我很高兴地看到谷歌最近在Tensor Flow上发布了TFRank。排名是一个非常重要的机器学习应用,而最近它可能没有得到应有的喜爱。

  似乎深度学习最终消除了对数据的智能需求,但事实远非如此。围绕着改进数据的想法,该领域仍有一些非常有趣的进展。例如,虽然数据增强已经存在一段时间了,而且对于许多深度学习应用程序来说很关键,但是今年谷歌发布了自动增强,它是一种自动增强训练数据的深度强化学习方法。一个更极端的想法是用合成数据训练深度学习模型。这已经在实践中被尝试了一段时间,并被许多人视为是人工智能未来的关键。NVidia在使用合成数据进行深度学习训练的论文中提出了有趣的新想法。在我们的“向专家学习”中,我们还展示了如何即使是在与现实数据相结合下,都能使用专家系统来生成合成数据,并使用这些数据来训练深度学习系统的方法。最后,还有一个有趣的方法,就是使用“弱监管”来减少对大量手工标记数据的需要。Snorkel是一个非常有趣的项目,旨在通过提供一个通用框架来促进这种方法。

相关推荐
  • 赢咖4娱乐第一批演讲嘉宾
  • 赢咖4注册人工智能机器学习年度2018年度进展综述
  • 赢咖4注册机器学习对金融行业的影响
  • 赢咖4娱乐自动炒币机器人开发的又一次应用成果
  • 赢咖4注册全球机器学习技术大会将于2021年1月北京召开
  • 赢咖4娱乐全球机器学习技术大会2021年1月北京隆重召开!
  • 赢咖4娱乐新栏目上线|我是戴小乐-集美貌与才华于一身
  • 赢咖4注册蚂蚁嘉汇:机器学习是一把双刃剑
  • 赢咖4注册不止发力机器学习领域 AWS或许还隐藏着更大野心
  • 赢咖4数据分析与机器学习:侦测应用内机器人作弊关键
  • 脚注信息
    版权所有 Copyright(C)2020 星辉娱乐
    网站地图|xml地图|友情链接: 百度一下